A Record-Breaking Trans-Atlantic African Dust Plume Associated with Atmospheric Circulation Extremes in June 2020

Author:

Pu Bing1,Jin Qinjian1

Affiliation:

1. Department of Geography and Atmospheric Science, University of Kansas, Lawrence, Kansas

Abstract

AbstractHigh concentrations of dust can affect climate and human health, yet our understanding of extreme dust events is still limited. A record-breaking trans-Atlantic African dust plume occurred during 14–28 June 2020, greatly degrading air quality over large areas of the Caribbean Basin and the United States. Daily PM2.5 concentrations exceeded 50 µg m−3 in several Gulf States, while the air quality index reached unhealthy levels for sensitive groups in more than 11 states. The magnitude and duration of aerosol optical depth over the tropical North Atlantic Ocean were the greatest ever observed during summer over the past 18 years based on satellite retrievals. This extreme trans-Atlantic dust event is associated with both enhanced dust emissions over western North Africa and atmospheric circulation extremes that favor long-range dust transport. An exceptionally strong African easterly jet and associated wave activities export African dust across the Atlantic toward the Caribbean in the middle to lower troposphere, while a westward extension of the North Atlantic subtropical high and a greatly intensified Caribbean low-level jet further transport the descended, shallower dust plume from the Caribbean Basin into the United States. Over western North Africa, increased dust emissions are associated with strongly enhanced surface winds over dust source regions and reduced vegetation coverage in the western Sahel. While there are large uncertainties associated with assessing future trends in African dust emissions, model-projected atmospheric circulation changes in a warmer future generally favor increased long-range transport of African dust to the Caribbean Basin and the United States.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3