ACCOMPLISHMENTS OF NOAA’S AIRBORNE HURRICANE FIELD PROGRAM AND A BROADER FUTURE APPROACH TO FORECAST IMPROVEMENT

Author:

Zawislak Jonathan12,Rogers Robert F.1,Aberson Sim D.1,Alaka Ghassan J.1,Alvey George12,Aksoy Altug12,Bucci Lisa1,Cione Joseph1,Dorst Neal1,Dunion Jason12,Fischer Michael12,Gamache John1,Gopalakrishnan Sundararaman1,Hazelton Andrew12,Holbach Heather M.13,Kaplan John1,Leighton Hua12,Marks Frank1,Murillo Shirley T.1,Reasor Paul1,Ryan Kelly12,Sellwood Kathryn12,Sippel Jason A.1,Zhang Jun A.12

Affiliation:

1. 1 National Oceanographic and Atmospheric Administration / Atlantic Oceanographic and Meteorological Laboratory / Hurricane Research Division, Miami, FL

2. 2 University of Miami / Cooperative Institute for Marine and Atmospheric Studies, Miami, FL

3. 3 Florida State University / Northern Gulf Institute, Tallahassee, FL

Abstract

AbstractSince 2005, NOAA has conducted the annual Intensity Forecasting Experiment (IFEX), led by scientists from the Hurricane Research Division at NOAA’s Atlantic Oceanographic andMeteorological Laboratory. They partner with NOAA’s Aircraft Operations Center, who maintain and operate the WP-3D and G-IV Hurricane Hunter aircraft, and NCEP’s National Hurricane Center and Environmental Modeling Center, who task airborne missions to gather data used by forecasters for analysis and forecasting and for ingest into operational numerical weather prediction models. The goal of IFEX is to improve tropical cyclone (TC) forecasts using an integrated approach of analyzing observations from aircraft, initializing and evaluating forecast models with those observations, and developing new airborne instrumentation and observing strategies targeted at filling observing gaps and maximizing the data’s impact in model forecasts. This summary article not only highlights recent IFEX contributions towards improved TC understanding and prediction, but also reflects more broadly on the accomplishments of the program during the 16 years of its existence. It describes how IFEX addresses high-priority forecast challenges, summarizes recent collaborations, describes advancements in observing systems monitoring structure and intensity, as well as in assimilation of aircraft data into operational models, and emphasizes key advances in understanding of TC processes, particularly those that lead to rapid intensification. The article concludes by laying the foundation for the “next generation” of IFEX as it broadens its scope to all TC hazards, particularly rainfall, storm-surge inundation, and tornadoes, that have gained notoriety during the last few years after several devastating landfalling TCs.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3