Affiliation:
1. 1 National Oceanographic and Atmospheric Administration / Atlantic Oceanographic and Meteorological Laboratory / Hurricane Research Division, Miami, FL
2. 2 University of Miami / Cooperative Institute for Marine and Atmospheric Studies, Miami, FL
3. 3 Florida State University / Northern Gulf Institute, Tallahassee, FL
Abstract
AbstractSince 2005, NOAA has conducted the annual Intensity Forecasting Experiment (IFEX), led by scientists from the Hurricane Research Division at NOAA’s Atlantic Oceanographic andMeteorological Laboratory. They partner with NOAA’s Aircraft Operations Center, who maintain and operate the WP-3D and G-IV Hurricane Hunter aircraft, and NCEP’s National Hurricane Center and Environmental Modeling Center, who task airborne missions to gather data used by forecasters for analysis and forecasting and for ingest into operational numerical weather prediction models. The goal of IFEX is to improve tropical cyclone (TC) forecasts using an integrated approach of analyzing observations from aircraft, initializing and evaluating forecast models with those observations, and developing new airborne instrumentation and observing strategies targeted at filling observing gaps and maximizing the data’s impact in model forecasts. This summary article not only highlights recent IFEX contributions towards improved TC understanding and prediction, but also reflects more broadly on the accomplishments of the program during the 16 years of its existence. It describes how IFEX addresses high-priority forecast challenges, summarizes recent collaborations, describes advancements in observing systems monitoring structure and intensity, as well as in assimilation of aircraft data into operational models, and emphasizes key advances in understanding of TC processes, particularly those that lead to rapid intensification. The article concludes by laying the foundation for the “next generation” of IFEX as it broadens its scope to all TC hazards, particularly rainfall, storm-surge inundation, and tornadoes, that have gained notoriety during the last few years after several devastating landfalling TCs.
Publisher
American Meteorological Society
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献