Demystifying Drought: Strategies to Enhance the Communication of a Complex Hazard

Author:

Lackstrom Kirsten1,Davis Corey2

Affiliation:

1. Carolinas Integrated Sciences and Assessments, University of South Carolina, Columbia, South Carolina

2. State Climate Office of North Carolina, North Carolina State University, Raleigh, North Carolina;

Abstract

Abstract Drought is a complex phenomenon that is difficult to characterize and monitor. Accurate and timely communication is necessary to ensure that affected sectors and the public can respond and manage associated risks and impacts. To that end, myriad drought indicators, indices, and other tools have been developed and made available, but understanding and using this information can be a challenge for end users who are unfamiliar with the information or presentation or for decision-makers with expertise in areas outside of climate and drought. This article highlights a project that aimed to improve the usability and dissemination of drought information for North Carolina (NC) audiences by addressing specific needs for a better understanding of how drought is monitored, the climatic and environmental conditions that can cause or worsen drought, and the impacts occurring in NC’s different sectors and subregions. Conducted to support NC’s official, statewide drought monitoring process, the project’s methods and results have utility for other geographies and contexts. The project team designed an iterative process to engage users in the development, evaluation, refinement, and distribution of new resources. Featured products include the Weekly Drought Update infographic, which explains the factors used to determine NC’s drought status, and the Short-Range Outlook infographic, a synthesis of National Weather Service forecasts. Effective strategies included using stakeholders’ preferred and existing channels to disseminate products, emphasizing impacts relevant to different user groups (such as agriculture, forestry, and water resources) rather than indices, and employing concise narratives and visualizations to translate technical and scientific information.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3