High-Definition Hurricanes: Improving Forecasts with Storm-Following Nests

Author:

Alaka Ghassan J.1,Zhang Xuejin1,Gopalakrishnan Sundararaman G.1

Affiliation:

1. 1 NOAA/AOML/Hurricane Research Division, Miami, Florida

Abstract

AbstractTo forecast tropical cyclone (TC) intensity and structure changes with fidelity, numerical weather prediction models must be “high definition”, i.e., horizontal grid spacing ≤ 3 km, so that they permit clouds and convection and resolve sharp gradients of momentum and moisture in the eyewall and rainbands. However, resolutions in operational global models remain too coarse to accurately predict these structures that are critical to TC intensity. Storm-following nests are a solution to this problem because they are computationally efficient at fine resolutions, providing a practical approach to improve TC intensity forecasts. Under the Hurricane Forecast Improvement Program, the operational Hurricane Weather Research and Forecasting (HWRF) system was developed to include telescopic, storm-following nests for a single TC per model integration. Subsequently, HWRF evolved into a state-of-the-art tool for TC predictions around the globe, although its single-storm nesting approach does not adequately simulate TC-TC interactions as they are observed. Basin-scale HWRF (HWRF-B) was developed later with a multi-storm nesting approach to improve the simulation of TC-TC interactions by producing high-resolution forecasts for multiple TCs simultaneously. In this study, the multi-storm nesting approach in HWRF-B was compared with a single-storm nesting approach using an otherwise identical model configuration. The multi-storm approach demonstrated TC intensity forecast improvements, including more realistic TC-TC interactions. Storm-following nests developed in HWRF and HWRF-B will be foundational to NOAA’s next-generation hurricane application in the Unified Forecast System.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3