Application of Microwave Space-Based Environmental Monitoring (SBEM) Data for Operational Tropical Cyclone Intensity Estimation at the Joint Typhoon Warning Center

Author:

Howell Brian1,Egan Sean2,Fine Caitlin3

Affiliation:

1. Joint Typhoon Warning Center, U.S. Air Force, Pearl Harbor, Hawaii;

2. Fleet Weather Center Norfolk Aviation Detachment, U.S. Navy, Kapaun, Germany;

3. Joint Typhoon Warning Center, U.S. Navy, Pearl Harbor, Hawaii

Abstract

Abstract The Joint Typhoon Warning Center (JTWC) utilized new space-based environmental monitoring (SBEM) data alongside traditional data to adjust JTWC tropical cyclone (TC) intensity and structure estimates during production of the official 2019 Best Track dataset. Intensity estimates from multiple platforms such as Advanced Microwave Scanning Radiometer-2 (AMSR2), the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) radiometers, and synthetic aperture radar (SAR), along with objective Dvorak and satellite consensus algorithms, not only aided the poststorm best track (BT) process, but also provided robust data that supported real-time analysis and forecasting. This summary attempts to communicate with the TC community the extent to which these new data affected the 2019 official BT data, how JTWC utilized these new data in the poststorm BT process, and provide examples of how these data influenced forecaster decision-making in real time. This paper makes no attempt to validate the accuracy of the wind speed estimates from these methods (SAR, SMAP/SMOS, or AMSR2) and does not outline the entirety of the JTWC process for determining TC intensity, but it does outline, briefly, the impact of these new datasets on the final JTWC BT intensity estimates and on real-time analysis. These methodologies are valuable sources of cyclone intensity estimates in an otherwise data-sparse area of responsibility, and in many cases provide critical data not captured by traditional methods alone, which are detailed further in this summary.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3