Stochastic Downscaling to Chaotic Weather Regimes using Spatially Conditioned Gaussian Random Fields with Adaptive Covariance

Author:

Prudden Rachel1,Robinson Niall1,Challenor Peter2,Everson Richard2

Affiliation:

1. Met Office Informatics Lab, Exeter, and University of Exeter, Exeter

2. University of Exeter, Exeter

Abstract

AbstractDownscaling aims to link the behaviour of the atmosphere at fine scales to properties measurable at coarser scales, and has the potential to provide high resolution information at a lower computational and storage cost than numerical simulation alone. This is especially appealing for targeting convective scales, which are at the edge of what is possible to simulate operationally. Since convective scale weather has a high degree of independence from larger scales, a generative approach is essential. We here propose a statistical method for downscaling moist variables to convective scales using conditional Gaussian random fields, with an application to wet bulb potential temperature (WBPT) data over the UK. Our model uses an adaptive covariance estimation to capture the variable spatial properties at convective scales. We further propose a method for the validation, which has historically been a challenge for generative models.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference136 articles.

1. Probabilistic weather prediction with an analog ensemble;Delle Monache;Mon. Wea. Rev.,2013

2. Wavelet transforms versus Fourier transforms;Strang;Bull. Amer. Math. Soc.,1993

3. andR closed - form gradient for the Earth mover s distance for spectral deep learning on biological data Workshop on Computational Biology New;Martinez,2016

4. andM Spatial - temporal solar power forecast through use of Gaussian conditional random fields General Meeting https org;Zhang;IEEE Power Energy Society IEEE,2016

5. Searching for analogues, how long must we wait?;Van Den Dool;Tellus,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3