Evaluating Benefits of Two-Way Ocean–Atmosphere Coupling for Global NWP Forecasts

Author:

Vellinga Michael1,Copsey Dan1,Graham Tim1,Milton Sean1,Johns Tim1

Affiliation:

1. Met Office, Exeter, United Kingdom

Abstract

AbstractWe evaluate the impact of adding two-way coupling between atmosphere and ocean to the Met Office deterministic global forecast model. As part of preoperational testing of this coupled NWP configuration we have three years of daily forecasts, run in parallel to the uncoupled operational forecasts. Skill in the middle and upper troposphere out to T + 168 h is generally increased compared to the uncoupled model. Improvements are strongest in the tropics and largely neutral in midlatitudes. We attribute the additional skill in the atmosphere to the ability of the coupled model to predict sea surface temperature (SST) variability in the (sub)tropics with greater skill than persisted SSTs as used in uncoupled forecasts. In the midlatitude, ocean skill for SST is currently marginally worse than persistence, possibly explaining why there is no additional skill for the atmosphere in midlatitudes. Sea ice is predicted more skillfully than persistence out to day 7 but the impact of this on skill in the atmosphere is difficult to verify. Two-way air–sea coupling benefits tropical cyclone forecasts by reducing median track and central pressure errors by around 5%, predominantly from T + 90 to T + 132 h. Benefits from coupling are largest for large cyclones, and for smaller storms coupling can be detrimental. In this study skill in forecasts of the Madden–Julian oscillation does not change with two-way air–sea coupling out to T + 168 h.

Funder

PWS

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3