Influence of a portable near-surface observing network on experimental ensemble forecasts of deep convection hazards during VORTEX-SE

Author:

Hill Aaron J.1,Weiss Christopher C.1,Dowell David C.2

Affiliation:

1. Department of Geosciences, Texas Tech University, Lubbock, TX

2. National Oceanic and Atmospheric Administration, Earth System Research Laboratories, Global Systems Laboratory

Abstract

AbstractEnsemble forecasts are generated with and without the assimilation of near-surface observations from a portable, mesoscale network of StickNet platforms during the Verification and Origins of Rotation in Tornadoes EXperiment – Southeast (VORTEX-SE). Four VORTEX-SE intensive observing periods are selected to evaluate the impact of StickNet observations on forecasts and predictability of deep convection within the southeast United States. StickNet observations are assimilated with an experimental version of the HighResolution RapidRefresh Ensemble (HRRRE) in one experiment, and withheld in a control forecast experiment. Overall, StickNet observations are found to effectively reduce mesoscale analysis and forecast errors of temperature and dewpoint. Differences in ensemble analyses between the two parallel experiments are maximized near the StickNet array and then either propagate away with the mean low-level flow through the forecast period or remain quasi-stationary, reducing local analysis biases. Forecast errors of temperature and dewpoint exhibit periods of improvement and degradation relative to the control forecast, and error increases are largely driven on the storm scale. Convection predictability, measured through subjective evaluation and objective verification of forecast updraft helicity, is driven more by when forecasts are initialized (i.e., more data assimilation cycles with conventional observations) rather than the inclusion of StickNet observations in data assimilation. It is hypothesized that the full impact of assimilating these data is not realized in part due to poor sampling of forecast sensitive regions by the StickNet platforms, as identified through ensemble sensitivity analysis.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3