The Naval Research Laboratory’s Coupled Ocean–Atmosphere Mesoscale Prediction System-Tropical Cyclone Ensemble (COAMPS-TC Ensemble)

Author:

Komaromi William A.1,Reinecke Patrick A.1,Doyle James D.1,Moskaitis Jonathan R.1

Affiliation:

1. a Naval Research Laboratory, Monterey, California

Abstract

AbstractThe 11-member Coupled Ocean–Atmosphere Mesoscale Prediction System-Tropical Cyclones (COAMPS-TC) ensemble has been developed by the Naval Research Laboratory (NRL) to produce probabilistic forecasts of tropical cyclone (TC) track, intensity and structure. All members run with a storm-following inner grid at convection-permitting 4-km horizontal resolution. The COAMPS-TC ensemble is constructed via a combination of perturbations to initial and boundary conditions, the initial vortex, and model physics to account for a variety of different sources of uncertainty that affect track and intensity forecasts. Unlike global model ensembles, which do a reasonable job capturing track uncertainty but not intensity, mesoscale ensembles such as the COAMPS-TC ensemble are necessary to provide a realistic intensity forecast spectrum. The initial and boundary condition perturbations are responsible for generating the majority of track spread at all lead times, as well as the intensity spread from 36 to 120 h. The vortex and physics perturbations are necessary to produce meaningful spread in the intensity prediction from 0 to 36 h. In a large sample of forecasts from 2014 to 2017, the ensemble-mean track and intensity forecast is superior to the unperturbed control forecast at all lead times, demonstrating a clear advantage to running an ensemble versus a deterministic forecast. The spread–skill relationship of the ensemble is also examined, and is found to be very well calibrated for track, but is underdispersive for intensity. Using a mixture of lateral boundary conditions derived from different global models is found to improve upon the spread–skill score for intensity, but it is hypothesized that additional physics perturbations will be necessary to achieve realistic ensemble spread.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3