Real-Time Identification of Equatorial Waves and Evaluation of Waves in Global Forecasts

Author:

Yang Gui-Ying12,Ferrett Samantha12,Woolnough Steve12,Methven John2,Holloway Chris2

Affiliation:

1. a National Centre of Atmospheric Science, University of Reading, Reading, United Kingdom

2. b Department of Meteorology, University of Reading, Reading, United Kingdom

Abstract

AbstractA novel technique is developed to identify equatorial waves in analyses and forecasts. In a real-time operational context, it is not possible to apply a frequency filter based on a wide centered time window due to the lack of future data. Therefore, equatorial wave identification is performed based primarily on spatial projection onto wave mode horizontal structures. Spatial projection alone cannot distinguish eastward- from westward-moving waves, so a broadband frequency filter is also applied. The novelty in the real-time technique is to off-center the time window needed for frequency filtering, using forecasts to extend the window beyond the current analysis. The quality of this equatorial wave diagnosis is evaluated. First, the “edge effect” arising because the analysis is near the end of the filter time window is assessed. Second, the impact of using forecasts to extend the window beyond the current date is quantified. Both impacts are shown to be small referenced to wave diagnosis based on a centered time window of reanalysis data. The technique is used to evaluate the skill of the Met Office forecast system in 2015–18. Global forecasts exhibit substantial skill (correlation > 0.6) in equatorial waves, to at least day 4 for Kelvin waves and day 6 for westward mixed Rossby–gravity (WMRG), and meridional mode number n = 1 and n = 2 Rossby waves. A local wave phase diagram is introduced that is useful to visualize and validate wave forecasts. It shows that in the model Kelvin waves systematically propagate too fast, and there is a 25% underestimate of amplitude in Kelvin and WMRG waves over the central Pacific.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3