Deep Learning Experiments for Tropical Cyclone Intensity Forecasts

Author:

Wenwei Xu1,Karthik Balaguru1,Andrew August2,Nicholas Lalo2,Nathan Hodas2,Mark DeMaria3,David Judi4

Affiliation:

1. * Marine and Coastal Research Laboratory, Pacific Northwest National Laboratory

2. ** Computing & Analytics Division, Pacific Northwest National Laboratory

3. *** Cooperative Institute for Research in the Atmosphere, Colorado State University

4. **** Earth Systems Science, Pacific Northwest National Laboratory

Abstract

AbstractReducing tropical cyclone (TC) intensity forecast errors is a challenging task that has interested the operational forecasting and research community for decades. To address this, we developed a deep learning (DL)-based Multilayer Perceptron (MLP) TC intensity prediction model. The model was trained using the global Statistical Hurricane Intensity Prediction Scheme (SHIPS) predictors to forecast the change in TC maximum wind speed for the Atlantic Basin. In the first experiment, a 24-hour forecast period was considered. To overcome sample size limitations, we adopted a Leave One Year Out (LOYO) testing scheme, where a model is trained using data from all years except one and then evaluated on the year that is left out. When tested on 2010–2018 operational data using the LOYO scheme, the MLP outperformed other statistical-dynamical models by 9-20%. Additional independent tests in 2019 and 2020 were conducted to simulate real-time operational forecasts, where the MLP model again outperformed the statistical-dynamical models by 5-22% and achieved comparable results as HWFI. The MLP model also correctly predicted more rapid intensification events than all the four operational TC intensity models compared. In the second experiment, we developed a lightweight MLP for 6-hour intensity predictions. When coupled with a synthetic TC track model, the lightweight MLP generated realistic TC intensity distribution in the Atlantic Basin. Therefore, the MLP-based approach has the potential to improve operational TC intensity forecasts, and will also be a viable option for generating synthetic TCs for climate studies.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3