Winter surface air temperature prediction over Japan using artificial neural networks

Author:

Ratnam J. V.1,Nonaka Masami1,Behera Swadhin K.1

Affiliation:

1. Application Laboratory, VAIG, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Abstract

AbstractThe machine learning technique, namely Artificial Neural Networks (ANN), is used to predict the surface air temperature (SAT) anomalies over Japan in the winter months of December, January and February for the period 1949/50 to 2019/20. The predictions are made for the four regions Hokkaido, North, Central and West of Japan. The inputs to the ANN model are derived from the anomaly correlation coefficients among the SAT anomalies over the regions of Japan and the global SAT and sea surface temperature anomalies. The results are validated using anomaly correlation coefficient (ACC) skill scores with the observation. It is found that the ANN predictions over Hokkaido have higher ACC skill scores compared to the ACC scores over the other three regions. The ANN predicted SAT anomalies are compared with that of ensemble mean of 8 of the North American Multi-Model Ensemble (NMME) models besides comparing them with the persistent anomalies. The ANN predictions over all the four regions have higher ACC skill scores compared to the NMME model skill scores in the common period of 1982/83 to 2018/19. The ANN predicted SAT anomalies also have higher Hit rate and lower False alarm rate compared to the NMME predicted SAT anomalies. All these indicate that the ANN model is a promising tool for predicting the winter SAT anomalies over Japan.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3