ARPEGE Cloud Cover Forecast Postprocessing with Convolutional Neural Network

Author:

Dupuy Florian1,Mestre Olivier23,Serrurier Mathieu4,Burdá Valentin Kivachuk1,Zamo Michaël23,Cabrera-Gutiérrez Naty Citlali1,Bakkay Mohamed Chafik1,Jouhaud Jean-Christophe5,Mader Maud-Alix1,Oller Guillaume1

Affiliation:

1. a Institut de Recherche Technologique Saint-Exupéry, Toulouse, France

2. b Météo-France, Direction des Opérations pour la Production, Toulouse, France

3. c CNRM/GAME, Météo-France/CNRS URA 1357, Toulouse, France

4. d IRIT, Université Paul Sabatier, Toulouse, France

5. e CERFACS, Toulouse, France

Abstract

AbstractCloud cover provides crucial information for many applications such as planning land observation missions from space. It remains, however, a challenging variable to forecast, and numerical weather prediction (NWP) models suffer from significant biases, hence, justifying the use of statistical postprocessing techniques. In this study, ARPEGE (Météo-France global NWP) cloud cover is postprocessed using a convolutional neural network (CNN). CNN is the most popular machine learning tool to deal with images. In our case, CNN allows the integration of spatial information contained in NWP outputs. We use a gridded cloud cover product derived from satellite observations over Europe as ground truth, and predictors are spatial fields of various variables produced by ARPEGE at the corresponding lead time. We show that a simple U-Net architecture (a particular type of CNN) produces significant improvements over Europe. Moreover, the U-Net outclasses more traditional machine learning methods used operationally such as a random forest and a logistic quantile regression. When using a large number of predictors, a first step toward interpretation is to produce a ranking of predictors by importance. Traditional methods of ranking (permutation importance, sequential selection, etc.) need important computational resources. We introduced a weighting predictor layer prior to the traditional U-Net architecture in order to produce such a ranking. The small number of additional weights to train (the same as the number of predictors) does not impact the computational time, representing a huge advantage compared to traditional methods.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3