Global Within-Season Yield Anomaly Prediction for Major Crops Derived Using Seasonal Forecasts of Large-Scale Climate Indices and Regional Temperature and Precipitation

Author:

Iizumi Toshichika1,Takaya Yuhei23,Kim Wonsik1,Nakaegawa Toshiyuki2,Maeda Shuhei4

Affiliation:

1. a Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan

2. b Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

3. c Global Environment and Marine Department, Japan Meteorological Agency, Tokyo, Japan

4. d Aerological Observatory, Japan Meteorological Agency, Tsukuba, Japan

Abstract

AbstractWeather and climate variability associated with major climate modes is a main driver of interannual yield variability of commodity crops in global cropland areas. A global crop forecasting service that is currently in the test operation phase is based on temperature and precipitation forecasts, while recent literature suggests that crop forecasting services may benefit from the use of climate index forecasts. However, no consistent comparison is available on prediction skill between yield models relying on forecasts from temperature and precipitation and from climate indices. Here, we present a global assessment of 26-yr (1983–2008) within-season yield anomaly hindcasts for maize, rice, wheat, and soybean derived using different types of statistical yield models. One type of model utilizes temperature and precipitation for individual cropping areas (the TP model type) to represent the current service, whereas the other type relies on large-scale climate indices (the CI model). For the TP models, three specifications with different model complexities are compared. The results show that the CI model is characterized by a small reduction in the skillful area from the reanalysis model to the hindcast model and shows the largest skillful areas for rice and soybean. In the TP models, the skill of the simple model is comparable to that of the more complex models. Our findings suggest that the use of climate index forecasts for global crop forecasting services in addition to temperature and precipitation forecasts likely increases the total number of crops and countries where skillful yield anomaly prediction is feasible.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3