Improving Afternoon Thunderstorm Prediction over Taiwan through 3DVar-Based Radar and Surface Data Assimilation

Author:

Chen I-Han12,Hong Jing-Shan1,Tsai Ya-Ting1,Fong Chin-Tzu1

Affiliation:

1. a Central Weather Bureau, Taipei, Taiwan

2. b Meteorologisches Institute, Ludwig-Maximilians-Universität, Munich, Germany

Abstract

AbstractRecently, the Central Weather Bureau of Taiwan developed a WRF- and WRF data assimilation (WRFDA)-based convective-scale data assimilation system to increase model predictability toward high-impact weather. In this study, we focus on afternoon thunderstorm (AT) prediction and investigate the following questions: 1) Is the designation of a rapid update cycle strategy with a blending scheme effective? 2) Can surface data assimilation contribute positively to AT prediction under the complex geography of Taiwan island? 3) What is the relative importance between radar and surface observation to AT prediction? 4) Can we increase the AT forecast lead time in the morning through data assimilation? Consecutive ATs from 30 June to 8 July 2017 are investigated. Five experiments, each having 240 continuous cycles, are designed. Results show that employing continuous cycles with a blending scheme mitigates model spinup compared with downscaled forecasts. Although there are few radar echoes before AT initiation, assimilating radar observations is still crucial since it largely corrects model errors in cycles. However, assimilating surface observations is more important compared with radar in terms of extending forecast lead time in the morning. Either radar or surface observations contribute positively, and assimilating both has the highest QPF score. Assimilating surface observations systematically improves surface wind and temperature predictions based on 240 cases. A case study demonstrates that the model can capture the AT initiation and development by assimilating surface and radar observations. Its cold pool and outflow boundary prediction are also improved. In this case, the assimilation of surface wind and water vapor in the morning contributes more compared with temperature and pressure.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3