Impact of Assimilating Wind Profiling Radar Observations on Convection-Permitting Quantitative Precipitation Forecasts during SCMREX

Author:

Zhang Xubin1,Luo Yali2,Wan Qilin1,Ding Weiyu1,Sun Jiaxiang3

Affiliation:

1. Institute of Tropical and Marine Meteorology/Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, China Meteorological Administration, Guangzhou, China

2. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

3. East China Regional Air Traffic Administration, Civil Aviation Administration of China, Shanghai, China

Abstract

Abstract To improve the prediction of heavy rainfall in southern China during the prerainy season, horizontal wind data from wind profiling radars (WPRs) were assimilated in the partial-cycle data assimilation (DA) system based on a three-dimensional variational method. The analyses from the DA system are used as initial conditions for the convection-permitting Global/Regional Assimilation and Prediction System (GRAPES) model. The impact of assimilating WPR data on the quantitative precipitation forecast (QPF) in southern China was evaluated over the period of the Southern China Monsoon Rainfall Experiment (SCMREX) in May 2014, by comparing the results of a control experiment with WPR data assimilated and a denial experiment without WPR data. The positive impact of WPR DA was significant on the forecasts of atmospheric variables in the vertical and diagnostic fields at the surface, especially those of surface wind fields in the 0–6-h range. The inclusion of WPR data also improved the QPF skill of light and heavy rainfall throughout the 12-h forecast period by reducing the predicted spurious precipitation (thereby alleviating overestimations and false alarms), with the largest improvement in 6-h heavy rainfall forecasts. WPR DA considerably alleviated the spinup problem, remarkably improving the QPF of heavy rainfall (especially extreme rainfall). The improved representation of wind and moisture at lower levels in the analyses due to WPR DA was the physical cause of the QPF improvement, as is illustrated using a case study.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3