Reexamining the United Kingdom’s Greatest Tornado Outbreak: Forecasting the Limited Extent of Tornadoes along a Cold Front

Author:

Apsley Miriam L.1,Mulder Kelsey J.1,Schultz David M.1

Affiliation:

1. Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Abstract

Abstract On 23 November 1981, a strong cold front swept across the United Kingdom, producing tornadoes from the west to the east coasts. An extensive campaign to collect tornado reports by the Tornado and Storm Research Organisation (TORRO) resulted in 104 reports, the largest U.K. outbreak on record. The front was simulated with a convection-permitting numerical model down to 200-m horizontal grid spacing to better understand its evolution and meteorological environment. The event was typical of tornadoes in the United Kingdom, with convective available potential energy (CAPE) less than 150 J kg−1, 0–1-km wind shear of 10–20 m s–1, and a narrow cold-frontal rainband forming precipitation cores and gaps. A line of cyclonic absolute vorticity existed along the front, with maxima as large as 0.04 s−1. Some hook-shaped misovortices bore kinematic similarity to supercells. The narrow swath along which the line was tornadic was bounded on the equatorward side by weak vorticity along the line and on the poleward side by zero CAPE, enclosing a region where the environment was otherwise favorable for tornadogenesis. To determine if the 104 tornado reports were plausible, first possible duplicate reports were eliminated, resulting in as few as 58 tornadoes to as many as 90. Second, the number of possible parent misovortices that may have spawned tornadoes is estimated from model output. The number of plausible tornado reports in the 200-m grid-spacing domain was 22 and as many as 44, whereas the model simulation was used to estimate 30 possible parent misovortices within this domain. These results suggest that a number of 90 reports was plausible.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3