Rapid-Update Radar Observations of Downbursts Occurring within an Intense Multicell Thunderstorm on 14 June 2011

Author:

Kuster Charles M.1,Heinselman Pamela L.2,Schuur Terry J.1

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, and NOAA/OAR/National Severe Storms Laboratory, and University of Oklahoma, Norman, Oklahoma

2. NOAA/OAR/National Severe Storms Laboratory, and University of Oklahoma, Norman, Oklahoma

Abstract

Abstract On 14 June 2011, an intense multicell thunderstorm produced one nonsevere and three severe downbursts within 35 km of the rapid-update, S-band phased array radar (PAR) at the National Weather Radar Testbed in Norman, Oklahoma, and the nearby polarimetric research Weather Surveillance Radar 1988-Doppler (KOUN). Data collected from these radars provided the opportunity to conduct a quantitative analysis of downburst precursor signature evolution depicted by 1-min PAR data and the associated evolution of differential reflectivity ZDR depicted by 5-min KOUN data. Precursors analyzed included descent of the reflectivity core, evolution of the magnitude and size of midlevel convergence (i.e., number of bins), and descending “troughs” of ZDR. The four downbursts exhibited midlevel convergence that rapidly increased to peak magnitude as the reflectivity core (65-dBZ isosurface) bottom and top descended. The ZDR troughs seen in the 5-min KOUN data appeared to descend along with the core bottom. Midlevel convergence size increased to a peak value and decreased as the reflectivity core descended in the three severe downbursts. In contrast, midlevel convergence size exhibited little change in the nonsevere downburst. The time scale of trends seen in the PAR data was 11 min or less and happened several minutes prior to each downburst’s maximum intensity. These results point to the importance of 1-min volumetric data in effectively resolving the evolution of downburst precursors, which could be beneficial to forecast operations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3