The Canadian Regional Data Assimilation and Forecasting System

Author:

Fillion Luc1,Tanguay Monique2,Lapalme Ervig3,Denis Bertrand3,Desgagne Michel2,Lee Vivian2,Ek Nils4,Liu Zhuo5,Lajoie Manon3,Caron Jean-François1,Pagé Christian6

Affiliation:

1. Data Assimilation and Satellite Meteorology Section, Canadian Meteorological Center, Dorval, Québec, Canada

2. Recherche en Prévision Numérique, Canadian Meteorological Center, Dorval, Québec, Canada

3. Development Division, Canadian Meteorological Center, Dorval, Québec, Canada

4. Operational Division, Canadian Meteorological Center, Dorval, Québec, Canada

5. Center for Earth Observation Science, University of Manitoba, Winnipeg, Manitoba, Canada

6. Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique, Toulouse, France

Abstract

Abstract This paper describes the recent changes to the regional data assimilation and forecasting system at the Canadian Meteorological Center. A major aspect is the replacement of the currently operational global variable resolution forecasting approach by a limited-area nested approach. In addition, the variational analysis code has been upgraded to allow limited-area three- and four-dimensional variational data assimilation (3D- and 4DVAR) analysis approaches. As a first implementation step, the constraints were to impose similar background error correlation modeling assumptions, equal computer resources, and the use of the same assimilated data. Both bi-Fourier and spherical-harmonics spectral representations of background error correlations were extensively tested for the large horizontal domain considered for the Canadian regional system. Under such conditions, it is shown that the new regional data assimilation and forecasting system performs as well as the current operational system and it produces slightly better 24-h accumulated precipitation scores as judged from an ensemble of winter and summer cases. Because of the large horizontal extent of the regional domain considered, a spherical-harmonics spectral representation of background error correlations was shown to perform better than the bi-Fourier representation, considering all evaluation scores examined in this study. The latter is more suitable for smaller domains and will be kept for the upcoming use in the kilometric-scale local analysis domains in order to support the Canadian Meteorological Center’s (CMC’s) operations using multiple domains over Canada. The CMC’s new regional system [i.e., a regional limited-area 3DVAR data assimilation system coupled to a limited-area model (REG-LAM3D)] is now undergoing its final evaluations before operational transfer. Important model and data assimilation upgrades are currently under development to fully exploit this new system and are briefly presented.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3