African Easterly Jet: Barotropic Instability, Waves, and Cyclogenesis

Author:

Wu Man-Li C.1,Reale Oreste2,Schubert Siegfried D.1,Suarez Max J.1,Thorncroft Chris D.3

Affiliation:

1. Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

2. Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland

3. Department of Earth and Atmospheric Sciences, University at Albany, State University of New York, Albany, New York

Abstract

This study investigates the structure of the African easterly jet, focusing on instability processes on a seasonal and subseasonal scale, with the goal of identifying features that could provide increased predictability of Atlantic tropical cyclogenesis. The Modern-Era Retrospective Analysis for Research and Applications (MERRA) is used as the main investigating tool. MERRA is compared with other reanalyses datasets from major operational centers around the world and was found to describe very effectively the circulation over the African monsoon region. In particular, a comparison with precipitation datasets from the Global Precipitation Climatology Project shows that MERRA realistically reproduces seasonal precipitation over that region. The verification of the generalized Kuo barotropic instability condition computed from seasonal means is found to have the interesting property of defining well the location where observed tropical storms are detected. This property does not appear to be an artifact of MERRA and is present also in the other adopted reanalysis datasets. Therefore, the fact that the areas where the mean flow is unstable seems to provide a more favorable environment for wave intensification, could be another factor to include—in addition to sea surface temperature, vertical shear, precipitation, the role of Saharan air, and others—among large-scale forcings affecting development and tropical cyclone frequency. In addition, two prominent modes of variability are found based on a spectral analysis that uses the Hilbert–Huang transform: a 2.5–6-day mode that corresponds well to the African easterly waves and also a 6–9-day mode that seems to be associated with tropical–extratropical interaction.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3