Universal Frequency Spectra of Surface Meteorological Fluctuations

Author:

Tsuchiya Chikara,Sato Kaoru,Nasuno Tomoe,Noda Akira T.,Satoh Masaki1

Affiliation:

1. Japan Agency for Marine-Earth Science and Technology, Kanagawa, and Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan

Abstract

Statistical characteristics of surface meteorology are examined in terms of frequency spectra. According to a recent work using hourly data over 50 yr in the Antarctic, the frequency spectra have a characteristic shape proportional to two different powers of the frequency in the frequency ranges lower and higher than a transition frequency of (several days)−1. To confirm the universality of the characteristic spectra, hourly data—including surface temperature, sea level pressure, and zonal and meridional winds—collected over 45 yr at 138 stations in Japan were analyzed. Similar spectral shapes are obtained for any physical quantities at all stations. The spectral slopes clearly depend on the latitude, particularly for sea level pressure, which in the high-frequency range are steeper at higher latitudes. Next, the analysis was extended using realistic simulation data over one month with a nonhydrostatic model to examine the global characteristics of the spectra in the high-frequency range. The model spectra accord well with the observations in Japan. The spectral slopes are largely dependent on the latitude—that is, shallow in the low latitudes, and steep in the middle and high latitudes for all the physical quantities. The latitudinal change of the spectral slope is severe around 30°, which may be due to the dynamical transition from nongeostrophy to geostrophy. The longitudinal variations are also observed according to the geography. The variance is large in the storm-track region for surface pressure, on the continents for temperature and over the ocean for winds.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3