Large-Scale Control of Summer Precipitation in Taiwan

Author:

Chou Ming-Dah1,Wu Chi-Hua1,Kau Wen-Shung2

Affiliation:

1. Department of Atmospheric Sciences, National Central University, Chung-Li, Taiwan

2. Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Abstract

Taiwan is located at the western stretch of the North Pacific high pressure (NP high) ridge in boreal summer, and its climate is highly sensitive to the NP high. By grouping years of anomalously high and low summer precipitation in Taiwan, this study investigated the large-scale atmospheric circulation and the land–sea temperature contrast during these two groups of years and identified the control of summer precipitation in Taiwan. It is found that in years when summer precipitation in Taiwan is anomalously high, the western stretch of the NP high weakens. Weakening of the western stretch of the NP high induces strengthened southerly wind and enhanced vertical motion in East Asia and the western NP (EA–WNP) region, which is essentially an invigorated summer monsoon circulation. Corresponding to the invigorated circulation, precipitation increases in the southern section of the EA–WNP but decreases in the midlatitude section of the EA–WNP. It is further found that in those wet years, the land–sea temperature contrast between Asia and the surrounding seas is anomalously large and that the westerly wind in the tropical Indian Ocean and the southerly wind in the South China Sea and the subtropical East Asia are strengthened, which is an accelerated cyclonic circulation surrounding South and Southeast Asia. Coincident with the invigorated monsoon circulation in the EA–WNP region is a weakened Asian high pressure (Asian high). This is in variance with the expectation that the invigorated monsoon circulation in the EA–WNP region is related to a strengthened Asian high. The weakened Asian high is related to the weakened monsoon circulation in South and Southeast Asia. It is suggested that these unexpected results might be due to the interannual time scale of this study as opposed to either climatological or decadal scales of previous studies.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3