Interdecadal Variability of Summer Rainfall in Taiwan Associated with Tropical Cyclones and Monsoon

Author:

Chen Jau-Ming1,Chen Hui-Shan1

Affiliation:

1. Institute of Maritime Information and Technology, National Kaohsiung Marine University, Kaohsiung, Taiwan

Abstract

Abstract This study investigates interdecadal variability of summer (June–August) rainfall in Taiwan for the 1950–2008 period. Summer rainfall in Taiwan is partitioned into two components: tropical cyclone (TC) rainfall caused by TC passage and seasonal monsoon rainfall associated with monsoon southwesterly flows. The joint interdecadal mode of TC rainfall and seasonal monsoon rainfall is extracted by empirical orthogonal function (EOF) analysis. The first interdecadal mode features an increasing trend plus a near-20-yr oscillation. The spatial patterns of this mode are uniform in sign over the entirety of Taiwan with positive anomalies for TC rainfall and negative anomalies for seasonal monsoon rainfall. These results reveal that TC rainfall and seasonal monsoon rainfall tend to vary inversely in interdecadal variability, with a positive trend in TC rainfall and a negative trend in seasonal monsoon rainfall. Large-scale regulating processes associated with this interdecadal rainfall mode are interpreted from the correlation patterns. Significant warm sea surface temperature (SST) anomalies exist in the tropical central and eastern Pacific and the Indian Ocean. At the low levels, an anomalous large-scale divergent center occurs in the Australian regions, which in turn evokes an anomalous cyclonic circulation in the subtropical North Pacific. Taiwan is on its western edge and affected by anomalous northeasterly flows, in company with weakening in the prevailing southwesterly flows and moisture transport from the South China Sea into Taiwan. As such, negative seasonal monsoon rainfall anomalies occur in Taiwan with a decreasing trend. The subtropical anomalous cyclonic circulation also weakens vertical wind shear over the major TC genesis region, that is, the Philippine Sea. Warm SST anomalies in this region and accompanying anomalous ascending motion provide additional favorable conditions for TC genesis. More TCs are thus formed in the Philippine Sea. The appearance of an anomalous cyclonic circulation in the subtropical North Pacific reflects a weakening of the Pacific subtopical high, which tends to retreat eastward and provides southeasterly or southerly flows on its western boundary to guide TCs formed in the Philippine Sea northwestward toward Taiwan. TC frequency and TC rainfall thus increase in Taiwan with an increasing trend.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3