Comments on “Diathermal Heat Transport in a Global Ocean Model”

Author:

Hochet Antoine1,Tailleux Rémi2

Affiliation:

1. Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, and Department of Meteorology, University of Reading, Reading, United Kingdom

2. Department of Meteorology, University of Reading, Reading, United Kingdom

Abstract

AbstractHolmes et al. (2019) have proposed a new theoretical framework for studying ocean heat uptake in potential temperature coordinates. One important step in their derivations requires understanding the temporal changes of the volume of water V with temperature greater than some value, which they write as the sum of two terms. The first one is due to the surface freshwater fluxes and is well defined, but the second one—attributed to the volume fluxes through the lower boundary of the domain—is given no explicit expression. What the authors mean exactly is unclear, however, because in the incompressible Boussinesq approximation, the use of a divergenceless velocity field implies that the sum of the volume fluxes through any kind of control volume must integrate to zero at all times. In this comment, we provide two alternative explicit mathematical expressions linking the volume change of Holmes et al. (2019) to the diabatic sources and sinks of heat that clarify their result. By contrasting Holmes et al.’s (2019) approach with that for a fully compressible ocean, it is concluded that the volume considered by Holmes et al. (2019) is best interpreted as a proxy for the Boussinesq mass M0 = ρ0V, where ρ0 is the reference Boussinesq density. If V were truly meant to represent volume rather than a proxy for the Boussinesq mass, the Boussinesq expression for dV/dt would have to be regarded as inaccurate because of its neglect of the volume changes resulting from mean density changes.

Funder

NERC

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3