Penetration of Wind-Generated Near-Inertial Waves into a Turbulent Ocean

Author:

Asselin Olivier1,Young William R.1

Affiliation:

1. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Abstract

AbstractAn idealized storm scenario is examined in which a wind-generated inertial wave interacts with a turbulent baroclinic quasigeostrophic flow. The flow is initialized by spinning up an Eady model with a stratification profile based on observations. The storm is modeled as an initial value problem for a mixed layer confined, horizontally uniform inertial oscillation. The primordial inertial oscillation evolves according to the phase-averaged model of Young and Ben Jelloul. Waves feed back onto the flow by modifying the potential vorticity. In the first few days, refraction dominates and wave energy is attracted (repelled) by regions of negative (positive) vorticity. Wave energy is subsequently drained down into the interior ocean guided by anticyclonic vortices. This drainage halts as wave energy encounters weakening vorticity. After a week or two, wave energy accumulates at the bottom of negative vorticity features, that is, along filamentary structures at shallow depths and in larger anticyclonic vortices at greater depths. Wave feedback tends to weaken vortices and thus slows the penetration of waves into the ocean interior. This nonlinear effect, however, is weak even for vigorous storms.

Funder

National Science Foundation

Office of Naval Research

Publisher

American Meteorological Society

Subject

Oceanography

Reference73 articles.

1. Near-inertial internal gravity waves in the ocean;Alford;Annu. Rev. Mar. Sci.,2016

2. An improved model of near-inertial wave dynamics;Asselin;J. Fluid Mech.,2019

3. On quasigeostrophic dynamics near the tropopause;Asselin,2016

4. On Boussinesq dynamics near the tropopause;Asselin;J. Atmos. Sci.,2018

5. Frequency filter for time integrations;Asselin;Mon. Wea. Rev.,1972

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3