Affiliation:
1. NASA Goddard Institute for Space Studies, and Department of Applied Physics and Mathematics, Columbia University, New York, New York
2. NASA Goddard Institute for Space Studies, and Center for Climate Systems Research, Columbia University, New York, New York
Abstract
AbstractThe mesoscale contribution to subduction in the Southern Ocean was studied by Sallée and Rintoul in 2011 (SR11) using the following mesoscale model. The adiabatic (A) regime was modeled with the Gent–McWilliams streamfunction, the diabatic (D) regime was modeled with tapering functions, the D–A interface was taken to be at the mixed layer depth, and the mesoscale diffusivity either was a constant or was given by a 2D model. Since the resulting subductions were an order of magnitude smaller than the data of ±200 m yr−1 as reported by Mazloff et al. in 2010, SR11 showed that if, instead of the above model-dependent mesoscale diffusivities, they employed the ones reported in 2008 by Sallée et al. from surface drifter observations, the subductions compared significantly better to the data. On those grounds, SR11 suggested a 10-fold increase of the diffusivity. In this work, we suggest that, since the mesoscale diffusivity is but one component of a much large mesoscale parameterization, one should first assess the latter’s overall performance followed by an assessment of the predicted Antarctic Circumpolar Current (ACC) subduction. We employ the mesoscale model formulated by Canuto et al. in 2018 and 2019 that includes recent theoretical and observational advances and that was assessed against a variety of data, including the output of 17 other OGCMs. The ACC diffusivities compare well to drifter data from Sallée et al., and the ACC subduction rates are in agreement with the data.
Funder
Goddard Space Flight Center
Publisher
American Meteorological Society
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献