Effects of Horizontal Resolution on Hourly Precipitation in AGCM Simulations

Author:

Kong Xianghui1,Wang Aihui1,Bi Xunqiang2,Li Xingyu3,Zhang He4

Affiliation:

1. Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

2. Climate Change Research Center, and State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

3. Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

4. International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Abstract

AbstractTo analyze the effects of horizontal resolution on hourly precipitation, four Atmospheric Model Intercomparison Project simulations are carried out using the Chinese Academy of Sciences Earth System Model (CAS-ESM) and the Community Earth System Model (CESM) during 1998–2016. They include CAS-ESM at resolutions of 1.4° latitude × 1.4° longitude (CAS-ESM L) and 0.5° × 0.5° (CAS-ESM H), and CESM at resolutions of 1.9° latitude × 2.5° longitude (CESM L) and 0.47° × 0.63° (CESM H), respectively. We focus on the simulated hourly precipitation frequency and assess the frequency with respect to high-resolution satellite observations and reanalysis. The high-resolution experiments show some improvements of measurable precipitation (>0.02 mm h−1) frequency. Noticeable improvement of heavy rainfall (>2 mm h−1) frequency is demonstrated at the high resolutions. The zonal mean, seasonal mean, and area-weighted average frequency support the above results. The high-resolution experiments outperform the low-resolution experiments in reproducing hourly precipitation intensity and amount. The added value is apparent in heavy precipitation intensity from CAS-ESM H and CESM H. Over the monsoon regions and tropical convergence zones, the patterns of probability density functions for precipitation from high-resolution experiments are closer to the observations and reanalysis than those from the low-resolution simulations. The improvement of measurable precipitation frequency is mainly caused by the reductions of the convective rainfall occurrence at high resolutions. The increasing large-scale precipitation and reasonable integrated water vapor flux contribute to the improvements in measurable rainfall intensity and heavy precipitation characteristics. The results of this study support the concept that high-resolution global simulations could produce improved hourly precipitation capabilities, especially for heavy rainfall.

Funder

the National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3