Undercatch Adjustments for Tipping-Bucket Gauge Measurements of Solid Precipitation

Author:

Kochendorfer John1,Earle Michael E.2,Hodyss Daniel3,Reverdin Audrey4,Roulet Yves-Alain5,Nitu Rodica6,Rasmussen Roy7,Landolt Scott7,Buisán Samuel8,Laine Timo9

Affiliation:

1. a Atmospheric Turbulence and Diffusion Division, NOAA/ARL, Oak Ridge, Tennessee

2. b Meteorological Service of Canada, Environment and Climate Change Canada, Dartmouth, Nova Scotia, Canada

3. c Remote Sensing Division, Naval Research Laboratory, Washington, D.C.

4. d Swiss Federal Institute of Technology Lausanne, Lausanne, Switzerland

5. e Meteoswiss, Payerne, Switzerland

6. f Environment and Climate Change Canada, Toronto, Ontario, Canada

7. g National Center for Atmospheric Research, Boulder, Colorado

8. h Delegación Territorial de AEMET en Aragón, Zaragoza, Spain

9. i Finnish Meteorological Institute, Helsinki, Finland

Abstract

AbstractHeated tipping-bucket (TB) gauges are used broadly in national weather monitoring networks, but their performance for the measurement of solid precipitation has not been well characterized. Manufacturer-provided TB gauges were evaluated at five test sites during the World Meteorological Organization Solid Precipitation Intercomparison Experiment (WMO-SPICE), with most gauge types tested at more than one site. The test results were used to develop and evaluate adjustments for the undercatch of solid precipitation by heated TB gauges. New methods were also developed to address challenges specific to measurements from heated TB gauges. Tipping-bucket transfer functions were created specifically to minimize the sum of errors over the course of the adjusted multiseasonal accumulation. This was based on the hypothesis that the best transfer function produces the most accurate long-term precipitation records, rather than accurate catch efficiency measurements or accurate daily or hourly precipitation measurements. Using this new approach, an adjustment function derived from multiple gauges was developed that performed better than traditional gauge-specific and multigauge catch efficiency derived adjustments. Because this new multigauge adjustment was developed using six different types of gauges tested at five different sites, it may be applicable to solid precipitation measurements from unshielded heated TB gauges that were not evaluated in WMO-SPICE. In addition, this new method of optimizing transfer functions may be useful for other types of precipitation gauges, as it has many practical advantages over the traditional catch efficiency methods used to derive undercatch adjustments.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3