Deep Learning for Spatially Explicit Prediction of Synoptic-Scale Fronts

Author:

Lagerquist Ryan1,McGovern Amy2,Gagne II David John3

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, and University of Oklahoma, Norman, Oklahoma

2. University of Oklahoma, Norman, Oklahoma

3. National Center for Atmospheric Research, Boulder, Colorado

Abstract

AbstractThis paper describes the use of convolutional neural nets (CNN), a type of deep learning, to identify fronts in gridded data, followed by a novel postprocessing method that converts probability grids to objects. Synoptic-scale fronts are often associated with extreme weather in the midlatitudes. Predictors are 1000-mb (1 mb = 1 hPa) grids of wind velocity, temperature, specific humidity, wet-bulb potential temperature, and/or geopotential height from the North American Regional Reanalysis. Labels are human-drawn fronts from Weather Prediction Center bulletins. We present two experiments to optimize parameters of the CNN and object conversion. To evaluate our system, we compare the objects (predicted warm and cold fronts) with human-analyzed warm and cold fronts, matching fronts of the same type within a 100- or 250-km neighborhood distance. At 250 km our system obtains a probability of detection of 0.73, success ratio of 0.65 (or false-alarm rate of 0.35), and critical success index of 0.52. These values drastically outperform the baseline, which is a traditional method from numerical frontal analysis. Our system is not intended to replace human meteorologists, but to provide an objective method that can be applied consistently and easily to a large number of cases. Our system could be used, for example, to create climatologies and quantify the spread in forecast frontal properties across members of a numerical weather prediction ensemble.

Funder

National Science Foundation

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference48 articles.

1. American Meteorological Society, 2014a: Equivalent temperature. Glossary of Meteorology, accessed 13 March 2018, http://glossary.ametsoc.org/wiki/Equivalent_temperature.

2. American Meteorological Society, 2014b: Front. Glossary of Meteorology, accessed 13 March 2018, http://glossary.ametsoc.org/wiki/Front.

3. American Meteorological Society, 2014c: Wet-bulb potential temperature. Glossary of Meteorology, accessed 13 March 2018, http://glossary.ametsoc.org/wiki/Pseudo_wet-bulb_potential_temperature.

4. American Meteorological Society, 2014d: Hypsometric equation. Glossary of Meteorology, accessed 13 March 2018, http://glossary.ametsoc.org/wiki/Hypsometric_equation.

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3