Combined Kalman Filter and Universal Kriging to Improve Storm Wind Speed Predictions for the Northeastern United States

Author:

Samalot Alexander1,Astitha Marina1ORCID,Yang Jaemo1,Galanis George2

Affiliation:

1. University of Connecticut, Civil and Environmental Engineering, Storrs, Connecticut

2. Hellenic Naval Academy, Section of Mathematics, Mathematical Modeling and Applications Laboratory, Piraeus, Greece

Abstract

Abstract The scope of this study is to assess a combination of well-known techniques for bias reduction and spatial interpolation in an attempt to improve wind speed prediction for storms on a gridded domain. This is accomplished by implementing Kalman filter (KF) for bias reduction and universal kriging (UK) for spatial interpolation as postprocessing steps for the Weather Research and Forecasting (WRF) Model. It is shown that for surface wind speed, a linear KF is adequate for eliminating systematic model errors with the available storm history. KF-estimated wind speed biases at station locations are then interpolated across the model domain using UK. The combined KF–UK approach improves the wind speed forecast median bias by 55% and RMSE by 15% (bulk statistics), while benefits obtained at station-specific locations can reach maximum improvements of 72% for RMSE and 100% for bias. Contingency statistics that inform on model performance over four categories of wind speed magnitude reveal that calm/moderate winds are successfully corrected but strong/gale winds cannot be adequately corrected by the combination of KF and UK, which is a disadvantage for improving prediction of severe storm conditions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference64 articles.

1. Wind speed spatial estimation for energy planning in Sicily: A neural kriging application;Cellura;Renewable Energy,2008

2. The impact of model physics on numerical wind forecasts;Cheng;Renewable Energy,2013

3. Coakley, H., J.Williams, and D.Baker, 2008: Universal kriging interpolator for satellite derived global data. M.S. thesis, Dept. of Electrical and Computer Engineering, Utah State University, 8 pp.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3