Reexamination of the Tropical Cyclone Wind–Pressure Relationship Based on Pre-1987 Aircraft Data in the Western North Pacific

Author:

Bai Lina1,Yu Hui1,Black Peter G.2,Xu Yinglong3,Ying Ming1,Tang Jie1,Guo Rong1

Affiliation:

1. Shanghai Typhoon Institute, CMA, Shanghai, China

2. NOAA/NCEP Environmental Modeling Center, I.M. Systems Group, College Park, Maryland

3. National Meteorological Center, CMA, Beijing, China

Abstract

Abstract The wind–pressure relationship (WPR) for tropical cyclones (TCs) in the western North Pacific is reexamined based on aircraft data, TC best track data, and daily reanalysis data during 1957–87. Minimum sea level pressure (MSLP) was estimated from aircraft reconnaissance, and maximum surface wind speeds (MSWs) were adjusted from the maximum wind speed at flight level. The mean MSLP was found to be higher during 1957–64 than during 1965–87, presumably due to the change in reconnaissance instrumentation and technology, which results in a systematic MSW bias (too high) before 1965 in the China Meteorological Administration (CMA) dataset. Further analyses found that the WPR used in the CMA dataset is more accurate for strong TCs, while the WPR in the Tokyo Regional Specialized Meteorological Center (RSMC) dataset is better for weak TCs after the MSW-RSMC converted by the Dvorak conversion table (1984) and when using the aircraft datasets as a baseline. Several prevailing operational WPRs used in the western North Pacific are reexamined. Results show that the WPR of Knaff and Zehr explains 71% of the variance with a MAE of 9.22 hPa, which represents a significant improvement over other WPRs. Utilizing data after 1965 (a total of 1874 samples), the effects of TC center latitude, size, translation speed, intensification trend, and environmental pressure on the WPRs were examined. Results show that faster-traveling TCs, smaller in size, and located in a higher environmental pressure at lower latitudes, exhibited a higher MSLP for a given MSW. Meanwhile, the latitude, translational speed, and the environmental pressure produces additional improvement, but the TC size and intensity change added only a little skill to the WPR equation.

Funder

National Natural Science Foundation of China Grant

Key Program for International S&T Cooperation Projects of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference39 articles.

1. Tropical cyclone minimum sea level pressure/maximum sustained wind relationship for the western North Pacific;Atkinson;Wea. Forecasting,1977

2. Physical understanding of the tropical cyclone wind-pressure relationship;Chavas;Nat. Commun.,2017

3. Adapting the Knaff and Zehr wind-pressure relationship for operational use in tropical cyclone warning centers;Courtney;Aust. Meteor. Oceanogr. J.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3