Affiliation:
1. The University of British Columbia, Vancouver, British Columbia, Canada
Abstract
Abstract
This study evaluates the grid-length dependency of the Weather Research and Forecasting (WRF) Model precipitation performance for two cases in the Southern Great Plains of the United States. The aim is to investigate the ability of different cumulus and microphysics parameterization schemes to represent precipitation processes throughout the transition between parameterized and resolved convective scales (e.g., the gray zone). The cases include the following: 1) a mesoscale convective system causing intense local precipitation, and 2) a frontal passage with light but continuous rainfall. The choice of cumulus parameterization appears to be a crucial differentiator in convective development and resulting precipitation patterns in the WRF simulations. Different microphysics schemes produce very similar outcomes, yet some of the more sophisticated schemes have substantially longer run times. This suggests that this additional computational expense does not necessarily provide meaningful forecast improvements, and those looking to run such schemes should perform their own evaluation to determine if this expense is warranted for their application. The best performing cumulus scheme overall for the two cases studies here was the scale-aware Grell–Freitas cumulus scheme. It was able to reproduce a smooth transition from subgrid- (cumulus) to resolved-scale (microphysics) precipitation with increasing resolution. It also produced the smallest errors for the convective event, outperforming the other cumulus schemes in predicting the timing and intensity of the precipitation.
Funder
Mitacs
Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
BC Hydro
Compute Canada
Publisher
American Meteorological Society
Cited by
81 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献