Evaluation of Cumulus and Microphysics Parameterizations in WRF across the Convective Gray Zone

Author:

Jeworrek Julia1,West Gregory1,Stull Roland1

Affiliation:

1. The University of British Columbia, Vancouver, British Columbia, Canada

Abstract

Abstract This study evaluates the grid-length dependency of the Weather Research and Forecasting (WRF) Model precipitation performance for two cases in the Southern Great Plains of the United States. The aim is to investigate the ability of different cumulus and microphysics parameterization schemes to represent precipitation processes throughout the transition between parameterized and resolved convective scales (e.g., the gray zone). The cases include the following: 1) a mesoscale convective system causing intense local precipitation, and 2) a frontal passage with light but continuous rainfall. The choice of cumulus parameterization appears to be a crucial differentiator in convective development and resulting precipitation patterns in the WRF simulations. Different microphysics schemes produce very similar outcomes, yet some of the more sophisticated schemes have substantially longer run times. This suggests that this additional computational expense does not necessarily provide meaningful forecast improvements, and those looking to run such schemes should perform their own evaluation to determine if this expense is warranted for their application. The best performing cumulus scheme overall for the two cases studies here was the scale-aware Grell–Freitas cumulus scheme. It was able to reproduce a smooth transition from subgrid- (cumulus) to resolved-scale (microphysics) precipitation with increasing resolution. It also produced the smallest errors for the convective event, outperforming the other cumulus schemes in predicting the timing and intensity of the precipitation.

Funder

Mitacs

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

BC Hydro

Compute Canada

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3