Estimation Methods for Nonhomogeneous Regression Models: Minimum Continuous Ranked Probability Score versus Maximum Likelihood

Author:

Gebetsberger Manuel1,Messner Jakob W.2,Mayr Georg J.3,Zeileis Achim4

Affiliation:

1. Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, and Division for Biomedical Physics, Medical University of Innsbruck, Innsbruck, Austria

2. Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark, and Department of Statistics, University of Innsbruck, Innsbruck, Austria

3. Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck, Austria

4. Department of Statistics, University of Innsbruck, Innsbruck, Austria

Abstract

Abstract Nonhomogeneous regression models are widely used to statistically postprocess numerical ensemble weather prediction models. Such regression models are capable of forecasting full probability distributions and correcting for ensemble errors in the mean and variance. To estimate the corresponding regression coefficients, minimization of the continuous ranked probability score (CRPS) has widely been used in meteorological postprocessing studies and has often been found to yield more calibrated forecasts compared to maximum likelihood estimation. From a theoretical perspective, both estimators are consistent and should lead to similar results, provided the correct distribution assumption about empirical data. Differences between the estimated values indicate a wrong specification of the regression model. This study compares the two estimators for probabilistic temperature forecasting with nonhomogeneous regression, where results show discrepancies for the classical Gaussian assumption. The heavy-tailed logistic and Student’s t distributions can improve forecast performance in terms of sharpness and calibration, and lead to only minor differences between the estimators employed. Finally, a simulation study confirms the importance of appropriate distribution assumptions and shows that for a correctly specified model the maximum likelihood estimator is slightly more efficient than the CRPS estimator.

Funder

University of Innsbruck

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3