Winter 2015/16 Atmospheric and Precipitation Anomalies over North America: El Niño Response and the Role of Noise

Author:

Chen Mingyue1,Kumar Arun1

Affiliation:

1. Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland

Abstract

Abstract The possible causes for the observed winter 2015/16 precipitation anomalies, which were opposite to the mean El Niño signal over the U.S. Southwest, are analyzed based on the ensemble of forecasts from the NCEP Climate Forecast System, version 2 (CFSv2). The analysis focuses on the role of anomalous sea surface temperature (SST) forcing and the contributions of atmospheric internal variability. The model-predicted ensemble mean forecast for December–January–February 2015/16 (DJF 2015/16) North American atmospheric anomalies compared favorably with the El Niño composite, although some difference existed. The predicted pattern was also like that in the previous strong El Niño events of 1982/83 and 1997/98. Therefore, the model largely predicted the teleconnection and precipitation response pattern in DJF 2015/16 like the mean El Niño signal. The observed negative precipitation anomalies over the U.S. Southwest in DJF 2015/16 were not consistent either with the observed or with the model-predicted El Niño composite. Analysis of the member-to-member variability in the ensemble of forecast anomalies allowed quantification of the contribution of atmospheric internal variability in shaping seasonal mean anomalies. There were considerable variations in the outcome of DJF 2015/16 precipitation over North America from one forecast to another even though the predicted SSTs were nearly identical. The observed DJF 2015/16 precipitation anomalies were well within the envelope of possible forecast outcomes. Therefore, the atmospheric internal variability could have played a considerable role in determining the observed DJF 2015/16 negative precipitation anomalies over the U.S. Southwest, and its role is discussed in the context of differences in response.

Funder

Climate Prediction Center/NCEP/NWS

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3