Affiliation:
1. National Center for Atmospheric Research, Boulder, Colorado
2. National Center for Atmospheric Research, and University Corporation for Atmospheric Research, Boulder, Colorado
Abstract
Abstract
This article explores the simultaneous effect of vertical wind shear (VWS) and low-level mean flow (LMF) on tropical cyclone (TC) structure evolution. The structural evolution of 180 western North Pacific TCs from 2002 to 2014 was measured by a new parameter, the RV ratio, which is defined as the ratio of a TC’s radius of 34-kt (17.5 m s−1) wind to its maximum wind speed at the ending point of the intensification period. Whereas TCs with RV ratios in the lowest quartile of all 180 samples favored intensification over expansion, and 82% of these TCs experienced rapid intensification, TCs with RV ratios in the topmost quartile favored size expansion over intensification. A novel result of this study is that TC RV ratios were found to correlate with the LMF orientation relative to the deep-layer VWS vector. Specifically, whereas an LMF directed toward the left-of-shear orientation favors TC intensification, a right-of-shear LMF favors TC size expansion. This study further analyzed the TC rainfall asymmetry and asymmetric surface flow using satellite observations. Results show that for a TC affected by an LMF with right-of-shear orientation, the positive surface flux anomaly in the upshear outer region promotes convection in the downshear rainband region. On the other hand, a left-of-shear LMF induces a positive surface flux anomaly in the downshear outer region, thus promoting convection in the upshear inner core. Enhancement of the symmetric inner-core convection favors intensification, whereas enhancement of the downshear rainband favors expansion.
Funder
Ministry of Science and Technology, Taiwan
National Science Foundation
Publisher
American Meteorological Society
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献