Empirical Master Equations. Part I: Numerical Properties

Author:

Dall’Amico Mauro1,Egger Joseph1

Affiliation:

1. Meteorological Institute of the Ludwig-Maximilians-Universität of Munich, Munich, Germany

Abstract

Abstract In the atmospheric sciences, master equations are mainly used in a discrete time approximation to provide forecasts of the probability density function in a discretized phase space spanned by a few climate variables. The coefficients of an empirical master equation (EME) are estimated from the relative frequencies of transitions observed in time series of the variables. The quality of an EME depends on, among other things, the length and time resolution of the available time series. In this part of the paper, these dependencies are studied on the basis of data from the three-component Lorenz model with additional white noise forcing. Thus, time series of almost any length and time resolution can be generated easily, and probability density forecasts can be compared directly with the evolution of an ensemble of points. Useful results are obtained by partitioning the phase space into several hundred cells of equal grid size. The authors find that a threshold length of the time series exists beyond which improvements in the performance of the EME are hard to detect. It is even more surprising that the performance deteriorates with reduction of the time step. This is due to an increase in numerical diffusion. The choice of the dimensionality and the selection of the variables of the EME are very important. The results of this part of the paper provide useful guidelines for any application of the EME in the atmospheric sciences and elsewhere. The second part of the paper illustrates the usefulness of these guidelines through applications to stratospheric dynamics.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference33 articles.

1. Statistical Inference about Markov Chains.;Anderson;Ann. Math. Stat.,1957

2. The quasi-biennial oscillation.;Baldwin;Rev. Geophys.,2001

3. Mixing in a meandering jet: A Markovian approximation.;Cencini;J. Phys. Oceanogr.,1999

4. Observed nondiffusive dynamics in large-scale atmospheric flow.;Crommelin;J. Atmos. Sci.,2004

5. Dall’Amico, M. , 2005: Data-based master equations for the stratosphere. Ph.D. thesis, Ludwig-Maximilians-Universität of Munich, Germany, 71 pp. [Available online at http://edoc.ub.uni-muenchen.de/archive/00003890/.].

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3