Improvement of Accuracy of Global Numerical Weather Prediction Using Refined Error Covariance Matrices

Author:

Ishibashi Toshiyuki1

Affiliation:

1. Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

Abstract

Abstract In data assimilation for NWP, accurate estimation of error covariance matrices (ECMs) and their use are essential to improve NWP accuracy. The objective of this study is to estimate ECMs of all observations and background variables using sampling statistics, and improve global NWP accuracy by using them. This study presents the first results of such all ECM refinement. ECM diagnostics combining multiple methods, and analysis and forecast cycle experiments were performed on the JMA global NWP system, where diagonal components of all ECMs and off-diagonal components of radiance observations are refined. The ECM diagnostic results are as follows: 1) the diagnosed error standard deviations (SDs) are generally much smaller than those of the JMA operational system (CNTL); 2) interchannel correlations in humidity-sensitive radiance errors are much larger than 0.2; and 3) horizontal correlation distances of AMSU-A are ~50 km, excluding channel 4. The experimental results include the following: 1) the diagnosed ECMs generally improve forecast accuracy over CNTL even without additional tunings; 2) the supplemental tuning parameter, which is the deflation factor (0.6 in SD) applied for the estimated ECMs of nonsatellite conventional data and GPS radio occultation data, statistically significantly improves forecast accuracy; 3) this value 0.6 is set as the same value as the ratio of the estimated background error SD to that in CNTL; 4) high-density assimilation (10 times) of AMSU-A is better than CNTL, not better than that with 5 times; and 5) ECMs estimated using boreal summer data can improve forecast accuracy in winter, which indicates their robustness.

Funder

JSPS KAKENHI Grant

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. All‐sky infrared radiance assimilation of a geostationary satellite in the Japan Meteorological Agency's global system;Quarterly Journal of the Royal Meteorological Society;2023-07

2. Evaluating the Influence of Weather Prediction Accuracy on Aircraft Performance Estimation;Lecture Notes in Electrical Engineering;2022-09-30

3. Background Error in WRF Model;WSEAS TRANSACTIONS ON ENVIRONMENT AND DEVELOPMENT;2020-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3