Assimilation of Satellite Microwave Observations over the Rainbands of Tropical Cyclones

Author:

Moradi Isaac12,Evans K. Franklin3,McCarty Will2,Cordero-Fuentes Marangelly2,Gelaro Ronald2,Black Robert A.4

Affiliation:

1. a Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

2. b NASA Global Modelling and Assimilation Office, Greenbelt, Maryland

3. c Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

4. d NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Abstract

AbstractA novel Bayesian Monte Carlo integration (BMCI) technique was developed to retrieve geophysical variables from satellite microwave radiometer data in the presence of tropical cyclones. The BMCI technique includes three steps: generating a stochastic database, simulating satellite brightness temperatures using a radiative transfer model, and retrieving geophysical variables such as profiles of temperature, relative humidity, and cloud liquid and ice water content from real observations. The technique also provides uncertainty estimates for each retrieval and can output the error covariance matrix of selected parameters. The measurements from the Advanced Technology Microwave Sounder (ATMS) on board Suomi National Polar-Orbiting Partnership (Suomi NPP) and the Global Precipitation Measurement (GPM) Microwave Imager (GMI) were used as input. A new technique was developed to correct the ATMS and GMI observations for the beam-filling effect, which is due to small-scale variability of precipitation and clouds when compared with the instrument footprint and also the nonlinear relation between the brightness temperature and precipitation. In addition, the assimilation of the BMCI retrievals into the NASA GEOS model is discussed for Hurricane Maria. The results show that assimilating the BMCI retrievals can influence the dynamical features of the cyclone, including a stronger warm core, a symmetric eye, and vertically aligned wind columns. Two possible factors that may limit the impact of the BMCI retrievals include 1) the resolution of the model (about 25 km), which was too coarse to show the potential of the BMCI data in improving the representation of tropical storms in the model forecast, and 2) the data assimilation system not being able to consider vertically correlated observation errors.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3