Random Forest Model to Assess Predictor Importance and Nowcast Severe Storms using High-Resolution Radar–GOES Satellite–Lightning Observations

Author:

Mecikalski John R.1,Sandmæl Thea N.2,Murillo Elisa M.2,Homeyer Cameron R.2,Bedka Kristopher M.3,Apke Jason M.4,Jewett Chris P.5

Affiliation:

1. 1 Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, Alabama

2. 3 School of Meteorology, University of Oklahoma, Norman, Oklahoma

3. 2 Science Directorate, NASA Langley Research Center, Hampton, Virginia

4. 4 Cooperative Institute for Research in the Atmosphere, Colorado State Univ., Fort Collins, CO

5. 5 Earth Systems Science Center, Huntsville, Alabama

Abstract

AbstractFew studies have assessed combined satellite, lightning, and radar databases to diagnose severe storm potential. The research goal here is to evaluate next-generation, 60-second update frequency geostationary satellite and lightning information with ground-based radar to isolate which variables, when used in concert, provide skillful discriminatory information for identifying severe (hail ≥2.5 cm in diameter, winds ≥25 m s–1, tornadoes) versus non-severe storms. The focus of this study is predicting severe thunderstorm and tornado warnings. A total of 2,004 storms in 2014–2015 were objectively tracked with 49 potential predictor fields related to May, daytime Great Plains convective storms. All storms occurred when 1-min Geostationary Operational Environmental Satellite (GOES)–14 “super rapid scan” data were available. The study used three importance methods to assess predictor importance related to severe warnings, and random forests to provide a model and skill evaluation measuring the ability to predict severe storms. Three predictor importance methods show that GOES mesoscale atmospheric motion vector derived cloud-top divergence and above anvil cirrus plume presence provide the most satellite-based discriminatory power for diagnosing severe warnings. Other important fields include Earth Networks Total Lightning flash density, GOES estimated cloud-top vorticity, and overshooting-top presence. Severe warning predictions are significantly improved at the 95% confidence level when a few important satellite and lightning fields are combined with radar fields, versus when only radar data are used in the random forests model. This study provides a basis for including satellite and lightning fields within machine-learning models to help forecast severe weather.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3