Exploring the Assimilation of GLM-Derived Water Vapor Mass in a Cycled 3DVAR Framework for the Short-Term Forecasts of High-Impact Convective Events

Author:

Hu Junjun1,Fierro Alexandre O.1,Wang Yunheng1,Gao Jidong2,Mansell Edward R.3

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

2. NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

3. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract The recent successful deployment of the Geostationary Lightning Mapper (GLM) on board the Geostationary Operational Environmental Satellite R series (GOES-16/17) provides nearly uniform spatiotemporal measurements of total lightning (intracloud plus cloud to ground) over the Americas and adjacent vast oceanic regions. This study evaluates the potential value of assimilating GLM-derived water vapor mixing ratio on short-term (≤6 h), cloud-scale (dx = 1.5 km) forecasts of five severe weather events over the Great Plains of the United States using a three-dimensional variational (3DVAR) data assimilation (DA) system. Toward a more systematic assimilation of real GLM data, this study conducted sensitivity tests aimed at evaluating the impact of the horizontal decorrelation length scale, DA cycling frequency, and the time window size for accumulating GLM lightning observations prior to the DA. Forecast statistics aggregated over all five cases suggested that an optimal forecast performance is obtained when lightning measurements are accumulated over a 10-min interval and GLM-derived water vapor mixing ratio values are assimilated every 15 min with a horizontal decorrelation length scale of 3 km. This suggested configuration for the GLM DA together with companion experiments (i) not assimilating any data, (ii) assimilating radar data only, and (iii) assimilating both GLM and radar data were evaluated for the same five cases. Overall, GLM data have shown potential to help improve the short-term (<3 h) forecast skill of composite reflectivity fields and individual storm tracks. While this result also held for accumulated rainfall, longer-term (≥3 h) forecasts were generally characterized by noteworthy wet biases.

Funder

NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma Cooperative Agreement

NOAA Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3