Surface Stress and Atmospheric Boundary Layer Response to Mesoscale SST Structure in Coupled Simulations of the Northern California Current System

Author:

Samelson R. M.1,O’Neill L. W.1,Chelton D. B.1,Skyllingstad E. D.1,Barbour P. L.1,Durski S. M.1

Affiliation:

1. College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Abstract

Abstract The influence of mesoscale sea surface temperature (SST) variations on wind stress and boundary layer winds is examined from coupled ocean–atmosphere numerical simulations and satellite observations of the northern California Current System. Model coupling coefficients relating the divergence and curl of wind stress and wind to downwind and crosswind SST gradients are generally smaller than observed values and vary by a factor of 2 depending on planetary boundary layer (PBL) scheme, with values larger for smoothed fields on the 0.25° observational grid than for unsmoothed fields on the 12-km model grid. Divergence coefficients are larger than curl coefficients on the 0.25° grid but not on the model grid, consistent with stronger scale dependence for the divergence response than for curl in a spatial cross-spectral analysis. Coupling coefficients for 10-m equivalent neutral stability winds are 30%–50% larger than those for 10-m wind, implying a correlated effect of surface-layer stability variations. Crosswind surface air temperature and SST gradients are more strongly coupled than downwind gradients, while the opposite is true for downwind and crosswind heat flux and SST gradients. Midlevel boundary layer wind coupling coefficients show a reversed response relative to the surface that is predicted by an analytical model; a predicted second reversal with height is not seen in the simulations. The relative values of coupling coefficients are consistent with previous results for the same PBL schemes in the Agulhas Return Current region, but their magnitudes are smaller, likely because of the effect of mean wind on perturbation heat fluxes.

Funder

National Aeronautics and Space Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3