A Numerical Study on the Influences of Sumatra Topography and Synoptic Features on Tropical Cyclone Formation over the Indian Ocean

Author:

Wang Chung-Chieh1,Ma Shin-Kai1,Johnson Richard H.2

Affiliation:

1. Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan

2. Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado

Abstract

Abstract Spanning across the equator with a northwest–southeast orientation, the island of Sumatra can exert significant influences on low-level flow. Under northeasterly flow, in particular, lee vortices can form and some of them may subsequently develop into tropical cyclones (TCs) in the Indian Ocean (IO). Building upon the recent work of Fine et al., this study investigates the roles of the Sumatra topography and other common features on the formation of selected cases for analysis and numerical experiments. Four cases in northern IO were selected for analysis and two of them [Nisha (2008) and Ward 2009)] for simulation at a grid size of 4 km. Sensitivity tests without the Sumatra topography were also performed. Our results indicate that during the lee stage, most pre-TC vortices tend to be stronger with a clearer circulation when the topography is present. However, the island’s terrain is a helpful but not a deciding factor in TC formation. Specifically, the vortices in the no-terrain tests also reach TC status, but just at a later time. Some common ingredients contributing to a favorable environment for TC genesis are identified. They include northeasterly winds near northern Sumatra, westerly wind bursts along the equator, and migratory disturbances (TC remnants or Borneo vortices) to provide additional vorticity/moisture from the South China Sea. These factors also appear in most of the 22 vortices in northern IO during October–December in 2008 and 2009. For the sole case (Cleo) examined in southern IO, the deflection of equatorial westerlies into northwesterlies by Sumatra (on the windward side) is also helpful to TC formation.

Funder

Ministry of Science and Technology, Taiwan

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference48 articles.

1. Typhoon Vamei: An equatorial tropical cyclone formation;Chang;Geophys. Res. Lett.,2003

2. Synoptic disturbances over the equatorial South China Sea and western Maritime Continent during boreal winter;Chang;Mon. Wea. Rev.,2005

3. On the growth of the hurricane depression;Charney;J. Atmos. Sci.,1964

4. Influence of southwest monsoon flow and typhoon track on Taiwan rainfall during the exit phase: Modeling study of Typhoon Morakot (2009);Chen,2017

5. Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall;Cotton;J. Climate Appl. Meteor.,1986

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3