Variations in Parametric Sensitivity for Wind Ramp Events in the Columbia River Basin

Author:

Smith Nicholas H.1,Ancell Brian C.1

Affiliation:

1. Texas Tech University, Lubbock, Texas

Abstract

Abstract This work investigates the sensitivity of wind speed forecasts during wind ramp events to parameters within a numerical weather prediction model boundary layer physics scheme. In a novel way, it explores how these sensitivities vary across 1) ensemble members with different initial conditions, 2) different times during the events, 3) different types of ramp-causing events, and 4) different horizontal grid spacing. Previous research finds that a small number of parameters in the surface layer and boundary layer schemes are responsible for the majority of the forecast uncertainty. In this study, the values of parameters within the Mellor–Yamada–Nakahishi–Niino (MYNN) boundary layer scheme and the MM5 surface layer scheme of the Weather Research and Forecasting (WRF) Model are perturbed in a systematic way to evaluate parametric sensitivity for two types of specific ramp-causing phenomena: marine pushes and stable mix-out events. This work is part of the Department of Energy’s Second Wind Forecast Improvement Project (WFIP2). A major finding of this study is that there are large differences in parametric sensitivity between members of the same initial condition ensemble for all cases. These variations in sensitivity are the result of differences in the atmospheric state within the initial condition ensemble, and the parametric sensitivity changes over the course of each forecast. Finally, parametric sensitivity changes between event type and with model resolution. These conclusions are particularly relevant for future sensitivity studies and efforts at model tuning.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3