Observed Near-Storm Environment Variations across the Southern Cumberland Plateau System in Northeastern Alabama

Author:

Lyza Anthony W.1,Murphy Todd A.2,Goudeau Barrett T.1,Pangle Preston T.1,Knupp Kevin R.1,Wade Ryan A.1

Affiliation:

1. Department of Atmospheric and Earth Science, Severe Weather Institute—Radar and Lightning Laboratories, University of Alabama in Huntsville, Huntsville, Alabama

2. Department of Atmospheric Science, University of Louisiana at Monroe, Monroe, Louisiana

Abstract

Abstract The Sand Mountain and Lookout Mountain Plateaus in northeastern Alabama have been established as a regional relative maximum in tornadogenesis reports within the southeastern United States. Investigation of long-term surface datasets has revealed (i) stronger and more backed winds atop Sand Mountain than over the Tennessee Valley, and (ii) measured cloud-base heights are lower to the surface atop Sand Mountain than over the Tennessee Valley. These observations suggest that low-level wind shear and lifting condensation level (LCL) height changes may lead to conditions more favorable for tornadogenesis atop the plateaus than over the Tennessee Valley. However, prior to fall 2016, no intensive observations had been made to further investigate low-level flow or thermodynamic changes in the topography of northeastern Alabama. This paper provides detailed analysis of observations gathered during VORTEX-SE field campaign cases from fall 2016 through spring 2019. These observations indicate that downslope winds form along the northwest edge of Sand Mountain in at least some severe storm environments in northeastern Alabama. Wind profiles gathered across northeastern Alabama indicate that low-level helicity changes can be substantial over small distances across different areas of the topographic system. LCL height changes often scale to changes in land elevation, which can be on the order of 200–300 m across northeastern Alabama.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3