Impact of Assimilating PECAN Profilers on the Prediction of Bore-Driven Nocturnal Convection: A Multiscale Forecast Evaluation for the 6 July 2015 Case Study

Author:

Chipilski Hristo G.1,Wang Xuguang1,Parsons David B.1

Affiliation:

1. School of Meteorology, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract Using data from the 6 July 2015 PECAN case study, this paper provides the first objective assessment of how the assimilation of ground-based remote sensing profilers affects the forecasts of bore-driven convection. To account for the multiscale nature of the phenomenon, data impacts are examined separately with respect to (i) the bore environment, (ii) the explicitly resolved bore, and (iii) the bore-initiated convection. The findings from this work suggest that remote sensing profiling instruments provide considerable advantages over conventional in situ observations, especially when the retrieved data are assimilated at a high temporal frequency. The clearest forecast improvements are seen in terms of the predicted bore environment where the assimilation of kinematic profilers reduces a preexisting bias in the structure of the low-level jet. Data impacts with respect to the other two forecast components are mixed in nature. While the assimilation of thermodynamic retrievals from the Atmospheric Emitted Radiance Interferometer (AERI) results in the best convective forecast, it also creates a positive bias in the height of the convectively generated bore. Conversely, the assimilation of wind profiler data improves the characteristics of the explicitly resolved bore, but tends to further exacerbate the lack of convection in the control forecasts. Various dynamical diagnostics utilized throughout this study provide a physical insight into the data impact results and demonstrate that a successful prediction of bore-driven convection requires an accurate depiction of the internal bore structure as well as the ambient environment ahead of it.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3