Comparing the Vertical Structures of Weighting Functions and Adjoint Sensitivity of Radiance and Verifying Mesoscale Forecasts Using AIRS Radiance Observations

Author:

Carrier Matthew J.1,Zou Xiaolei1,Lapenta William M.2

Affiliation:

1. The Florida State University, Tallahassee, Florida

2. Global Hydrology and Climate Center, NASA Marshall Space Flight Center, Huntsville, Alabama

Abstract

Abstract An adjoint sensitivity analysis is conducted using the adjoint of the hyperspectral radiative transfer model (RTM) that simulates the radiance spectrum from the Advanced Infrared Sounder (AIRS). It is shown, both theoretically and numerically, that the height of the maximum sensitivity of radiance in a channel could be higher or lower than the height of the maximum weighting function of that channel. It is shown that the discrepancy between the two heights is determined by the vertical structures of the atmospheric thermodynamic state. The sensitivity finds the level at which changes in temperature and/or moisture will have the largest influence on the simulated brightness temperature (BT), and the maximum weighting function (WF) height indicates the level where the model atmosphere contributes most significantly to the emission at the top of the atmosphere. Based on the above findings, an adjoint method for forecast verification using AIRS radiances is presented. In this method, model forecasts are first mapped into radiance space by an RTM so that they can be compared directly with the observed radiance values. The adjoint sensitivity analysis results are then used to connect the deviations of the model forecasts from observed radiances to the changes of temperature and moisture variables in model space. This adjoint sensitivity based model verification provides useful information on forecast model performances based on indirect observations from satellites.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3