Sampling Errors in Ensemble Kalman Filtering. Part I: Theory

Author:

Sacher William1,Bartello Peter1

Affiliation:

1. McGill University, Montréal, Québec, Canada

Abstract

Abstract This paper discusses the quality of the analysis given by the ensemble Kalman filter in a perfect model context when ensemble sizes are limited. The overall goal is to improve the theoretical understanding of the problem of systematic errors in the analysis variance due to the limited size of the ensemble, as well as the potential of the so-called double-ensemble Kalman filter, covariance inflation, and randomly perturbed analysis techniques to produce a stable analysis—that is to say, one not subject to filter divergence. This is achieved by expressing the error of the ensemble mean and the analysis error covariance matrix in terms of the sampling noise in the background error covariance matrix (owing to the finite ensemble estimation) and by comparing these errors for all methods. Theoretical predictions are confirmed with a simple scalar test case. In light of the analytical results obtained, the expression of the optimal covariance inflation factor is proposed in terms of the limited ensemble size and the Kalman gain.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3