Effects of the Cold Core Eddy on Tropical Cyclone Intensity and Structure under Idealized Air–Sea Interaction Conditions

Author:

Ma Zhanhong1,Fei Jianfang1,Liu Lei1,Huang Xiaogang1,Cheng Xiaoping1

Affiliation:

1. Institute of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing, China

Abstract

Abstract The impacts of ocean feedback on tropical cyclones (TCs) are investigated using a coupled atmosphere–ocean model under idealized TC and cold core eddy (CCE) conditions. Results reveal negative impacts of the ocean coupling on TC development. The cold wake induced by a TC not only weakens the TC intensity but also limits the expansion of the storm circulation. The presence of CCE has boosted the TC-induced sea surface temperature cooling, which conversely inhibits the TC development. The TC appears to be weakened as it encounters the CCE edge. The intensity reduction attains a maximum shortly after the TC passes over the CCE center, and simultaneously the CCE-induced asymmetry of the storm structure is most significant as well. The TC undergoes a period of recovery after departure from the CCE, lasting about 36–48 h. During this time the residual asymmetry caused by the CCE is smoothed gradually by storm axisymmetrization. The CCE has induced smaller TC size throughout the simulation even after the TC intensity has completely recovered, an indication of longer recovery time for the TC size. Notably cooler and moister eye air in the lower troposphere, just under the warm-core height, is found in the experiment with CCE. The water vapor mixing ratio budget analysis indicates that it is primarily attributed to changes in vertical advection that occurred in the eye, that is, the undermined eye subsidence associated with the suppressed eyewall convection. The horizontal patterns of vertical motion in the boundary layer are also distinctly changed by the CCE.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference58 articles.

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3