Stability Analysis of Geostrophic Adjustment on Hexagonal Grids for Regions with Variable Depth

Author:

Torsvik Tomas1,Thiem Øyvind1,Berntsen Jarle1

Affiliation:

1. Department of Mathematics, University of Bergen, Bergen, Norway

Abstract

Abstract Hexagonal grids have been used in a number of numerical studies, and especially in relation to atmospheric models. Recent studies have suggested that ocean circulation models may also benefit from the use of hexagonal grids. These grids tend to induce less systematic errors and have better horizontal isotropy properties than traditional square grid schemes. If hexagonal grids are to be applied in ocean models, a number of features that are characteristic of ocean circulation problems need to be attended to. The topography of the ocean basin is an important feature in most ocean models. Ocean modelers can experience instabilities due to depth variations. In the present paper, analysis of the propagation matrix for the spatially discretized system is used to explain unphysical growth of the numerical solutions of the linear shallow water equations when using hexagonal grids over domains with variable depth. It is shown that a suitable weighting of the Coriolis terms may give an energy-conserving and stable numerical scheme.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3