Affiliation:
1. School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
Abstract
Abstract
The evolution of the stable boundary layer is simulated using an idealized single-column model of pressure-driven flow coupled to a surface energy budget. Several commonly used parameterizations of turbulence are examined. The agreement between the simulated wind and temperature profiles and tower observations from the Cabauw tower is generally good given the simplicity of the model. The collapse and recovery of turbulence is explored in the presence of a large-scale pressure gradient, but excluding transient submesoscale atmospheric forcings such as internal waves and density-driven currents. The sensitivity tests presented here clarify the role of both rotation and the surface energy budget in the collapse and recovery of turbulence for the pressure-driven dry stable boundary layer (SBL). Conditions of stability are affected strongly by the geostrophic winds, the cloud cover, and the thermal conductivity of the surface. Inertial oscillations and the subsurface temperature have a weaker influence. Particularly noteworthy is the relationship between SBL regime and the relative importance of the terms in the surface energy budget.
Funder
Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
Publisher
American Meteorological Society
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献